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a b s t r a c t

Biological control, the use of predators and pathogens to control target pests, is a promising alternative
to chemical control. It is hypothesized that the introduced predators efficacy can be boosted by
providing them with an additional food source. The current literature (Srinivasu, 2007; 2010; 2011)
claims that if the additional food is of sufficiently large quantity and quality then pest eradication is
possible in finite time. The purpose of the current manuscript is to show that to the contrary, pest
eradication is not possible in finite time, for any quantity and quality of additional food. We show
that pest eradication will occur only in infinite time, and derive decay rates to the extinction state.
We posit a new modeling framework to yield finite time pest extinction. Our results have large scale
implications for the effective design of biological control methods involving additional food.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Overview

The combination of species introductions (both intentional
and accidental), and changing habitats due to human activity, has
led to a growing number of invasive species worldwide (Pimentel
et al., 2005; Paini et al., 2016; Lewis et al., 2016; Jongejans
et al., 2011). The development and implementation of successful
control strategies for these pest species is crucial. Control and
even eradication has been successful in some cases (Paini et al.,
2016), but we are still losing ground as the number of new
invasive species recorded annually continues to grow (now at a
rate of over 500 new species per year; Seebens et al., 2017), with
no indication of things slowing down. Normally benign native
species can also become destructive pests when humans alter
environments, for example by farming crops in large monocul-
tures (Wetzel et al., 2016).

Chemical pesticides have been used heavily to control and
eliminate pest species an estimated 500 million kg is applied
annually in the United States alone (Pimentel and Burgess, 2014).
This has been used heavily against corn insects, such as in the
state of Iowa and the Midwest in general, where losses due
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to the European corn borer and Western corn rootworm alone,
amount to in excess of $3 billion annually (Lundgren et al., 2015;
Sappington, 2014; Lundgren and Fergen, 2014). However, chem-
ical pesticides can have a variety of negative environmental and
human health impacts. One alternative is deployment of biolog-
ical control agents — natural enemies of the pest species (Van
Driesche and Bellows, 1996; Czaja et al., 2015; Bampfylde and
Lewis, 2007; Kang D. Bai et al., 2017; Snyder and Wise, 1999).
The effects of antagonistic ecological interactions (i.e. a predator
eating animal pests, an herbivore eating plant pests, or pathogens
infecting both animal and plant pests) are qualitatively similar —
one species negatively impacts the other while benefiting from
the interaction.

The benefits of using a biological control approach are that
it is non-toxic and can be self-sustainable. Once introduced, a
successful predator population can grow and reproduce, remov-
ing the need for the repeated applications often required with
the use of chemical pesticides (Bampfylde and Lewis, 2007; Van
Driesche and Bellows, 1996). However, there are also potential
drawbacks, including the possibility for insufficient predation
pressure resulting in incomplete eradication of the pest species
and the potential for ecological and/ or evolutionary shifts that
result in expected species interactions (Sabelis and Van Rijn,
2006; Friman et al., 2014). One approach when the introduced
predator does not sufficiently reduce pest density, is to try and
boost predator efficiency by supplementing the system with an
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additional food source for the predator. Food supplementation
has been tested in a range of field studies, sometimes leading
to significant reductions in numbers of pests (pests declined in
28 of the 59 trials reviewed in Wade et al., 2008), but rarely is
complete elimination reported. There has been many investiga-
tions into factors that may determine the efficacy of the food
supplementation (Canas and O’Neil, 1998; Evans and Swallow,
1993; Shannon et al., 2007; Saunders et al., 2010; Wetzel et al.,
2016; Tena et al., 2015; Rosenheim et al., 1995; Tena et al., 2015;
Evans and Swallow, 1993; Sabelis and Van Rijn, 2006; Evans and
Richards, 1997) but there is no clear consensus in the biological
literature, as to why or why not this approach works.

A number of mathematical models that describe predator-
pest dynamics with an additional food source have been devel-
oped, stemming from three key papers in the literature, starting
with Srinivasu et al. (2007) and continued in Srinivasu and Prasad
(2010) and Srinivasu and Prasad (2011). In these works the dy-
namics of an introduced predator depredating on a target pest,
whilst it is provided with an additional food source is intro-
duced. This is modeled by the following non-dimensionalized
system (Srinivasu et al., 2007),
dx
dt

= x(1 −
x
γ
) −

xy
1 + αξ + x

,

dy
dt

=
βxy

1 + αξ + x
+

βξy
1 + αξ + x

− δy.
(1)

Here x(t), y(t) are non-dimensionalized measures of the num-
ber/density of pest and predator species divided by the half
saturation constant of the functional response in the original
model. γ is the carrying capacity of the pest, again relative to the
original half saturation constant, β is the conversion efficiency of
the predator relative to the maximum birth rate of the pest, δ
is the death rate of the predator again relative to the maximum
birth rate of the pest, 1

α
is the quality of the additional food

provided to the predator. Essentially 1
α

=
h1
h2
, where h1 is the

predators handling time for the pest, and h2 is the predators
handling time for the additional food. Thus high quality additional
food (or 1

α
being large) corresponds to h2 being much smaller than

h1 — that is the predator is able to handle the additional food
much faster than the target pest. ξ is the quantity of additional
food provided to the predator, again relative to the half saturation
constant. See Srinivasu et al. (2007) for further description of the
non-dimensionalization of these parameters. Note, γ , β, δ, α, ξ
are all positive constants. We provide the details behind the
derivation of the functional response for the above model in
(7)–(9).

In Srinivasu et al. (2007) it is claimed that (1) can facilitate pest
extinction in finite time. We quote from Srinivasu et al. (2007),

‘‘Originally, if the ecosystem supports coexistence of prey and
predators (i.e., the system (1) admits an interior equilibrium point
whether stable or unstable) then continuous supply of high-quality
additional food to the predators with the supply level ξ ∈ [0, δ

β−δα
]

decreases the equilibrium prey population from δ
β−δ

. Increasing the
additional food supply beyond this interval eradicates the prey
from the ecosystem in a finite time, and from that time the preda-
tors survive only on the external food supply’’. The above claim is
however not proved until Srinivasu and Prasad (2011). The above
results are highly promising for the field of biological control, as
they show a modification to the classic Rosenzweig–McArthur
model, via the introduction of additional food can cause pest
eradication. Thus these results have led to much research activity
recently (Srinivasu et al., 2007; Srinivasu and Prasad, 2010, 2011;
Chakraborty et al., 2017; Srinivasu et al., 2018). The quantity
β − δα, comes up from the form of the equilibrium solutions to
(1). Here x(ξ ) =

δ−(β−δα)ξ
β−δ

. Thus for positivity of equilibrium we

require, δ
β−δα

> ξ > 0, and so we require β−δα > 0. If ξ > δ
β−δα

,
there is no interior equilibrium, and only a pest free equilibrium
exists, seen from the form of the nullclines of (1), Srinivasu et al.
(2007) and Srinivasu and Prasad (2011). Biologically, β − δα > 0
can be interpreted as 1

α
> δ

β
, or that the quality of additional

food should be greater than the ratio of deaths to births in the
system, for there to exist a feasible interior equilibrium — and
for the possibility for additional food mediated pest extinction.
That is if 1

α
< δ

β
, then pest extinction via additional food is not

possible, see Lemma 2.1.
In the current manuscript we show that pest eradication via

(1), is not possible in finite time, even if the quantity of additional
food satisfies, ξ > δ

β−δα
. This is shown via Theorem 2.2. We

also show pest eradication in finite time is not possible even
in the limit that ξ → ∞, or in the limit that α → 0. That
is for any arbitrarily high quantity or quality of additional food,
via Proposition 1. Note, additional food can however cause pest
eradication in infinite time. Decay rates to the extinction state
are derived via Lemma 5.1. Lastly we propose a new model for
finite time pest extinction via (15)–(16). The finite time extinction
results are demonstrated via Theorem 2.3 and Corollary 1. We
also show that under certain choice of parameters the pest free
equilibrium is globally attracting, via Theorem 2.4.

2. Finite time extinction

2.1. Constant quantity of additional food

We recap the result of interest from the literature which
quantifies the efficacy of the predator to achieve pest eradication
when supplemented with additional food via (1),

Lemma 2.1 (cf. Lemma 1 from Srinivasu and Prasad, 2011; Srinivasu
et al., 2007).

(a) If the quality of the additional food satisfies β − δα > 0,
then prey can be eradicated from the ecosystem in a finite time by
providing the predator with additional food of quantity ξ > δ

β−δα
.

(b) If the quality of the additional food satisfies β − δα < 0,
then it is not possible to eradicate prey from the ecosystem through
provision of such additional food to the predators.

Remark 1. Notice if ξ = 0, or there is no additional food
(1) reduces to the classical Rosenzweig–McArthur predator–prey
model, for which we know prey eradication is not possible, as the
only prey free state is (0, 0), which is unstable.

Note, Lemma 2.1 is not quite accurate. That is for a constant
quantity of additional food, pest extinction does not occur in finite
time. We state this via the following theorem,

Theorem 2.2. Consider the predator-pest system described via (1).
Pest eradication is not possible in finite time even if the quality of
the additional food satisfies β − δα > 0 and the quantity of the
additional food satisfies ξ > δ

β−δα
.

Pest extinction is however possible in infinite time. We derive
decay rates to this end,

Proposition 1. Consider the predator-pest system described via (1),
and assume we remain in the region of the phase defined by

y ≥ x + 1 + αξ, (2)

then if the pest is driven to the extinction state, for an arbitrarily
large quantity ξ of additional food, this occurs at best at the super
exponential rate

x0e−e

(
β
α +β

)
t
≤ x(t). (3)
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Fig. 1. We simulate (1) with β = 0.4, δ = 0.3, γ = 200, ξ = 7.6, α = 1.2.
Here ξ = 7.6 > 7.5 =

0.3
0.4−(0.3)(1.2) =

δ
β−δα

. Thus according to Lemma 2.1
from Srinivasu et al. (2007) and Srinivasu and Prasad (2011) pest eradication
is possible in a finite time. We pick initial conditions x0 = 3, y0 = 14. This
ensures that the initial data satisfies the condition of Proposition 1.

Also, if the pest is driven to the extinction state, for an arbitrarily
high quality 1

α
of additional food, this occurs at best at the super

exponential rate

x0e−e(βξ+β)t
≤ x(t). (4)

These decay estimates are compared to the polynomial and
super exponential decay rates derived in Lemma 5.1 in 1. We also
compare them to an exponential decay rate. We see from the sim-
ulations therein that the decay rate of the pest to the extinction
state is closer to super exponential than polynomial. This decay
rate however depends on the choice of parameters. Thus for dif-
ferent parameters it could be closer to a polynomial/exponential
decay.

2.2. The foraging time of a predator

In this section we recap certain pertinent classical theory on
the foraging time of predators. This will provide a transition
into our new modeling formulation. The classical theory of ‘‘time
budget’’ in ecology (Kuang, 2007) assumes that a predator spends
its time on two kinds of activities:

• Searching for prey
• Handling prey: chasing, killing, eating and digesting.

The predators total foraging time T equals the sum of time spent
on searching Ts and time spent on handling Th. Assume that
a predator captures Ha prey during time T . Handling time is
proportional to the number of prey captured, so Th = Hah. Where
h is time spent on handling of one prey. We also assume that a
predator searches area a (search rate) per unit of time and catch
a fixed proportion ρ of all prey in there. Let x be the prey density,
then Ts =

Ha
aρx , and standard ecological theory (Kuang, 2007)

yields the classical type II functional response,

p(x) =
aρx

1 + aρhx
(5)

There is a consensus in the literature that provision of addi-
tional food will increase the total time T that the predator spends
in foraging, as there now is a component Ta, which is the time that

goes to handling the additional food (Srinivasu et al., 2007, 2018),

Ta =
Ha

aρx
hξα (6)

The handling time of the additional food is directly propor-
tional to its quantity ξ (more additional food — longer it will take
to handle) and inversely proportional to its quality (note quality
is 1

α
, so lower quality food will take longer to handle and digest).
However the overall handling time is now Th + Ta. Thus the

overall foraging time now is,

T = Ts + Th + Ta =
Ha

aρx
+ Hah +

Ha

aρx
hξα (7)

and hence

Ha =
aρxT

1 + hξα + aρhx
(8)

This gives the functional response used in the current liter-
ature (Srinivasu et al., 2007; Srinivasu and Prasad, 2010, 2011)

p(x) =
Ha

T
=

aρx
1 + hξα + aρhx

(9)

The above functional response looks similar to the Holling type
II response. However, its significance is in the hξα term that
appears in it. This enables the vertical predator nullcline to be
moved closer and closer to the y-axis, by increasing ξ the quantity
of additional food. Then finally over to coincide with the y-axis
which yields a prey free state. For any value of ξ greater than this
(that is if ξ > δ

β−δα
(Srinivasu et al., 2007; Srinivasu and Prasad,

2011)) one will only have a prey free state, while the predator
can survive on additional food. This mechanism is not possible
without the additional food ξ .

2.3. A new modeling formulation

We present a new modeling formulation next. We define Tha,
as the time that goes to handling the target pest in the presence
of additional food, and Tsa, the time that goes into searching
for the target pest in the presence of additional food. Also, the
assumption in the literature is that the predator does not spend
any time in searching for the additional food itself (Srinivasu and
Prasad, 2010, 2011).

We make the following assumptions,

Assumption 1. The predator will spend the same time T on
foraging, with or without the additional food. That is,

Tsa + Tha + Ta ≈ Ts + Th (10)

Assumption 2. The additional food does not have an effect on the
predators handling time of the pest, so Tha = Th. Since Ta ≥ 0, via
(10) we have,

Tsa ≤ Ts (11)

We conjecture,

Conjecture 1. The additional food ξ lowers the predators search
time for the pest,

Tsa(x, ξ ) =
Ha

aρ(f (x, ξ ))
≤

Ha

aρx
= Ts(x), (12)

where f (x, ξ ) ≥ x, and f (x, 0) = x. The effect of ξ is pronounced at
low pest density, and declines at higher pest densities, so (Ts − Tsa),
is a monotonically decreasing function of pest density x. Also,

lim
x→∞

(Ts − Tsa) → 0. (13)
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Fig. 2. The search time Tsa is shown across a range of pest densities. We show
three different search times, for varying amounts of additional food ξ . We also
compare to the model with no additional food (ξ = 0).

See Fig. 2 where we show the search time Tsa as a function
of pest density, and the effect of additional food on it. We also
compare it to Ts. Essentially, at low pest density, the additional
food model (ξ > 0) shows a shorter search and higher pest
consumption rate compared to the model without additional
food (ξ = 0). Higher ξ , shortens search times, but this is most
pronounced at low pest densities, and less pronounced at higher
pest densities. That is (Ts − Tsa) → 0 as x ≫ 1. Note the search
times are not continuous at x = 0, and that x = 0 is a vertical
asymptote for the search times. This intuitively means that the
predators search times get infinitely large in the limit of vanishing
prey.

We are not certain about what the most realistic form of f
should be biologically. We are merely positing that there is an
effect of the additional food ξ on decreasing the predators search
time, and this can be modeled via an f , that does not necessarily
depend linearly on pest density x. Note, various f have been
proposed in the ecological literature, advocating that in certain
situations search time does not decrease linearly with increasing
prey density (McKenzie et al., 2012; Ruxton, 2005; Mols et al.,
2004). In order to determine the precise feedback between the
additional food and the pest density, we will have to perform
species specific laboratory experiments such as in Ruxton (2005).

However, if one assumes Tsa(x) =
Ha

aρ(f (x,ξ )) , and follows stan-
dard optimal foraging theory such as via (7)–(9), so that(
energy intake
foraging time

)
is maximized, then the functional response that

is derived is,

p(x) =
Ha

T
=

aρf (x, ξ )
1 + hξα + aρhf (x, ξ )

(14)

Thus, given a search time as in (12), where f (x, ξ ) = x +

ξg(x), following standard theory (Křivan, 1996), one obtains the
corresponding predator pest system,
dx
dt

= x(1 −
x
γ
) −

(x + ξg(x))y
1 + αξ + (x + ξg(x))

, (15)

dy
dt

=
β(x + ξg(x))y

1 + αξ + (x + ξg(x))
+

βξy
1 + αξ + (x + ξg(x))

− δy. (16)

Remark 2. Theoretically, for f (x, ξ ) = x + ξg(x), g(x) could be a
variety of sub-linear functions, for finite time extinction to occur,
such as g(x) =

√
x. See Theorem 2.3 and Corollary 1.

Fig. 3. Here we are plotting the curves via (44) to partition the space of initial
data into those which led to finite time blow up/finite time extinction vs those
which do not.

Theorem 2.3. Consider the predator-pest system described via
(15)–(16). For any set of parameters, there exist a sufficiently large
initial condition y0, and a sufficiently small initial condition x0, for
which pest eradication is possible in finite time.

We next state a corollary that follows,

Corollary 1. Consider (15)–(16). If g(v) satisfies,(
1 + ξvg

(
1
v

))
vp > (1 + αξ )v + 1 + ξvg

(
1
v

)
, (17)

for v =
1
x ≫ 1, 0 < p < 1, then x the solution to (15) will go

extinct in finite time for suitably small initial data x0. Such a g is
necessarily sub linear (see Fig. 3).

2.4. Dynamics of new model

In this section we demonstrate that the predator-pest system
described via (15)–(16) exhibits a variety of dynamics. We choose
α = 1, β = 0.4, γ = 6, δ = 0.3, and vary the quantity of
additional food ξ . Our choice of parameter values is biologically
motivated in that we clearly want a higher intrinsic growth rate
of the predator, than death rate, so β > δ — whilst maintaining
a moderate carrying capacity level γ . The choice of α = 1,
modulates ξ to be in the range [0, 3] for an interior equilibrium
to exist. Given that γ = 6, a maximum of ξ = 3 would
be approximately half the carrying capacity at most, which is
biologically realistic (Czaja et al., 2015; Sabelis and Van Rijn,
2006; Wade et al., 2008).

We notice that various dynamics are possible in ranges of ξ .
For 0 < ξ < 0.2, there exists an interior equilibrium which is
locally stable. This is shown in Fig. 4. For larger initial conditions,
we see that the pest free equilibrium is reached in finite time.
When we increase ξ beyond 0.2, the interior equilibrium loses
stability, and a limit cycle appears. This happens through a Hopf
bifurcation. We see this numerically via computing eigenvalues
when ξ = 0.18, the interior equilibrium is a spiral sink and
the eigenvalues are −0.0031385 + 0.1966i and −0.0031385 +

0.1966i. We then compute eigenvalues when ξ = 0.22. Now
the interior equilibrium is a spiral source and the eigenvalues
are 0.0089257 + 0.19656i and 0.0089257 − 0.19656i, and so the
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Fig. 4. We see the phase plot and corresponding time series for via (15)–(16) when 0 < ξ < 0.2. There exists a locally stable interior equilibrium as well as a pest
extinction state.

Fig. 5. We see the phase plot and corresponding time series for via (15)–(16) when 0.2 < ξ < 1. There now exists a limit cycle as well as a pest extinction state.

eigenvalues have crossed the real axis from negative to positive as
the parameter ξ is varied in the range [.18, .22]. The trajectories
spiral out of the unstable equilibrium and onto the stable limit
cycle, which has formed as a result of a super critical Hopf
bifurcation. This is seen via Fig. 5. Pest extinction in finite time
still occurs for larger initial conditions.

Next, as we increase ξ beyond 1, the limit cycle disappears,
there is an interior equilibrium, but it is unstable. Thus the pest
extinction state becomes globally attracting. This is seen via Fig. 6.
Increasing ξ beyond 3 causes this interior unstable equilibrium
to disappear, and we only have the pest extinction state which is
globally attracting.

We next state a global stability result, for the pest free equi-
librium.

Theorem 2.4. Consider the predator-pest system described via
(15)–(16). There exist parameter values for which the pest free
equilibrium is globally stable, as long as g(x) satisfies the condition
in (17).

3. Discussion and conclusions

We have shown for a constant quantity of additional food,
pest eradication is not possible in finite time no matter how
large the quantity or how high the quality of the additional food
is. However, with the introduction of additional food the pest
population can be reduced to very small numbers, and in a real
biological population, this may turn out to be sufficient. Popu-
lations with a small numbers of individuals are often subject to
increased demographic stochasticity, leading to high likelihoods
of extinction (Percus, 2005) despite their continuous determinis-
tic dynamics suggesting otherwise. Future exploration of models
that include stochasticity could help to determine how the likeli-
hood of eradication changes in the presence of additional food
when small population processes are considered. Alternatively,
since a constant quantity of additional food cannot yield finite
time eradication of the pest, some amount of stochasticity could
even cause pest rebound. Proving conditions under which this
might occur can also make for an interesting future direction.
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Fig. 6. We see the phase plot and corresponding time series for via (15)–(16) when 1 < ξ . There now exist an unstable interior equilibrium and a pest extinction
state.

Our alternate modeling framework suggests a way in which
additional food could result in finite time pest extinction. This
new framework relies on the assumption that predators spend
a fixed amount of time foraging for food and when additional
food is provided, predators adjust the amount of time they spend
searching for the pest. This adjustment results in shorter pest
search time and so higher pest consumption rates at low pest
density. A few studies suggest that this type of functional re-
sponse can be appropriate in some real systems (McKenzie et al.,
2012; Mols et al., 2004; Ruxton, 2005; Ioannou et al., 2008),
and lab experiments are currently under way to explore this
possibility further. The specific biological mechanisms that might
drive this kind of non-linear relationship between prey density
and handling time are not clear, but rely on deviations from mod-
eling predators and prey as simply random moving particles that
bump into each other at some rate proportional to their density.
Instead, predators and/or prey adjust their predation and escape
behaviors respectively and these behavioral changes then impact
encounter rates. An example that might work in the context of
our model might be predators moving (and so searching) more
quickly when their energy has been boosted by consumption of a
secondary type of food. In a study characterizing stickleback fish
searching and consuming invertebrate prey, Ioannou et al. (2008),
found that stickleback tend to increase their searching speed the
longer they go without encountering prey. Further observational
and experimental studies are required to identify more behavioral
changes that have the potential to impact search time.

Another interesting direction would be to derive our predator-
pest system, using the classical optimal foraging theory in the
setting of one predator — two prey (Křivan, 1996; Krivan, 2010),
where the second prey item would be the additional food. How-
ever, in this framework, the handling time of the preys does not
depend on each other. In our assumed frame work, we assume
the additional food influences the handling time of target prey,
and working to verify this possibility both theoretically and via
laboratory experiments, are the subject of current and future
investigations. Note that if we allow a very large amount of
additional food to be input into the system, it is unreasonable to
expect that the predator will continue to focus on the target pest.
Thus a reasonable assumption here may be to restrict the range of
ξ , so as to be in tune with the classical one predator — two prey
optimal foraging theory. Phase analysis shows that the predator-
pest system (15)–(16), derived via our new modeling framework

has a variety of interesting dynamics. A pest free equilibrium
is certainly possible for small values of γ and large values of ξ
— and under certain parametric restrictions this can be globally
attracting. A future direction of interest is a complete dynamical
analysis of this system, exploring the various intermittent dy-
namics and bifurcations as we vary all the other parameters of
interest. In particular it would be useful to calculate the separatrix
dividing the phase space into trajectories that converge to the
interior equilibrium or limit cycle, versus those that converge
to the pest free state. It would also be interesting to derive
parametric restrictions under which the pest free equilibrium is
globally attracting (see Fig. 6).

Regardless of the mode by which this is applied in real sys-
tems, a key to pest eradication seems clear — increase per capita
prey consumption rates when the pest population size is low. In
this regard, exploration of other functional forms for the density-
dependent food supplementation may prove fruitful, particularly
ones that describe changes in predator handling and searching
behavior that depend on pest and/ or additional food densities.

Mathematical models of biocontrol can provide an idea of
what dynamics are possible and suggest routes by which pest
eradication is theoretically feasible. Future directions involve
studying the effects of pest refuge, evolutionary effects as well
as stochastic effects (Parshad et al., 2016a; Krivan, 2010; Percus,
2005; Bailey et al., 2013, 2015; Friman et al., 2014; Parshad
et al., 2016b; Hawkins et al., 1993). However, experimental tests
are required to assess the biological reality of applying these
strategies. Laboratory experiments using dynamically interact-
ing predator (protozoa), prey (bacteria), and additional food (a
chemical supplement) are currently underway and will help
to provide an additional intermediate step linking theory to
successful biocontrol applications in the natural world.
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Appendix

Proof of Theorem 2.2. We proceed by contradiction. Assume the
following parametric restrictions on the quality and quantity of
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additional food are satisfied, β − δα > 0, ξ > δ
β−δα

, and the pest
x goes extinct in finite time. Then

lim
t→T∗<∞

x(t) → 0. (18)

Now consider the state variable v, defined by v =
1
x . We must

have

lim
t→T∗<∞

v(t) → ∞. (19)

or v must blow up in finite time (Quittner and Souplet, 2007;
Parshad et al., 2017). A simple substitution v =

1
x in (1) yields

the following new system for the states v and y.

dv
dt

= −v +
1
γ

+
yv2

1 + (1 + αξ )v
dy
dt

=
β(1 + ξv)y

1 + (1 + αξ )v
− δy

(20)

Using positivity of the states a simple estimate yields,

dv
dt

= −v +
1
γ

+
yv2

1 + (1 + αξ )v
≤ −v +

1
γ

+ yv,

dy
dt

=
β(1 + ξv)y

1 + (1 + αξ )v
− δy ≤

(
βξ

1 + αξ
+ β

)
y.

(21)

Note, from (1) a simple comparison with the logistic equation
yields, x < γ , so
1
x

= v >
1
γ

=> −v +
1
γ

< 0, (22)

inserting this in (21) yields,

dv
dt

= −v +
1
γ

+
yv2

1 + (1 + αξ )v
< yv,

dy
dt

=
β(1 + ξv)y

1 + (1 + αξ )v
− δy ≤

(
βξ

1 + αξ
+ β

)
y.

(23)

By a simple comparison argument ṽ, ỹ are super solutions to
v, y, where ṽ, ỹ solve

dṽ
dt

= ỹṽ, ṽ0 = v0,
dỹ
dt

=

(
βξ

1 + αξ
+ β

)
ỹ, ỹ0 = y0. (24)

Since from (24) ỹ = y0e
(

βξ
1+αξ

+β

)
t , using this in the equation

for ṽ yields the following estimate,

ṽ ≤ C1ee
C2

(
βξ

1+αξ
+β

)
t

(25)

where C1, C2 can be large constants depending on initial condi-
tions. However, (25) shows ṽ cannot blow up in finite time. By
comparison we have

v ≤ ṽ ≤ C1ee
C2

(
βξ

1+αξ
+β

)
t

(26)

Thus v also cannot blow up in finite time. This implies x =
1
v

cannot go extinct in finite time, which is a contradiction to our
initial assumption. □

We next prove a technical lemma, required in the proof of
Proposition 1.

Lemma 5.1. Consider the predator-pest system described via (1),
and assume we remain in the region of the phase defined by

y ≥ x + 1 + αξ (27)

then if the pest is driven to the extinction state, this occurs at the
following decay rate

x0e−e

(
βξ

1+αξ
+β

)
t
≤ x ≤

x0γ
γ + x0t

(28)

Proof. Assume y ≥ x + 1 + αξ =
1
v

+ 1 + αξ , then we have
yv ≥ 1 + (1 + αξ )v which implies

−v +
1
γ

+
yv2

1 + (1 + αξ )v
= −v +

1
γ

+

(
yv

1 + (1 + αξ )v

)
v

> −v +
1
γ

+ v =
1
γ

, (29)

inserting the above in (20) yields,

dv
dt

= −v +
1
γ

+
yv2

1 + (1 + αξ )v
≥

1
γ

,

dy
dt

=
β(1 + ξv)y

1 + (1 + αξ )v
− δy ≤

(
βξ

1 + αξ
+ β

)
y.

(30)

Integrating the above yields,

v ≥
t
γ

+ v0 (31)

or

x ≤
x0γ

γ + x0t
(32)

The lower bound follows from the estimate via (26) where

1
x

= v ≤ ṽ < v0ee
(

βξ
1+αξ

+β

)
t

(33)

thus

x0e−e

(
βξ

1+αξ
+β

)
t
≤ x, (34)

and the proof is complete. □

Remark 3. The decay rate to the extinction state will depend
on the parameter values chosen. There are essentially 2 ways in
which pest extinction takes place (Srinivasu et al., 2007; Srinivasu
and Prasad, 2010, 2011). The pest can go extinct, and the predator
continues to grow exponentially, or it levels off and reaches a
steady state. For parameter values such that the predator grows
exponentially, the decay in the pest would be closer to super
exponential. However, if the predator went to a steady state, the
decay would be closer to exponential/polynomial. This is also
seen easily in adjusting the condition in Lemma 5.1 to be yv ≥

2(1 + (1 + αξ )v), which yields, dv
dt ≥ −v +

1
γ

+ 2v > v. Further
yielding, v > v0et or x < x0e−t .

We next show the proof of Proposition 1.

Proof. We can consider an arbitrarily large quantity of additional
food by taking the limit as ξ → ∞ in (34) to yield

lim
ξ→∞

x0e−e

(
βξ

1+αξ
+β

)
t
= x0e−e

(
β
α +β

)
t
≤ x. (35)

We can consider an arbitrarily high quality of additional food
by taking the limit as α → 0 in (34) to yield

lim
α→0

x0e−e

(
βξ

1+αξ
+β

)
t
= x0e−e(βξ+β)t

≤ x. □ (36)

Remark 4. Notice, v cannot blow up in finite time, even for
arbitrarily large ξ . This is easily seen from the form of the expo-
nential in (26), and taking the limit therein as ξ → ∞. Thus even
arbitrarily large constant quantities of additional food, cannot
drive the pest x to extinction in finite time. The same applies for
constant quality. Recall the quality of additional food is 1

α
. Thus

in order to increase the quality of the additional food one must
decrease α. However, from the form of the exponential in (26),
we see that v cannot blow up in finite time, even for arbitrarily
small α, or in the limit that α → 0.
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We present the proof of Theorem 2.3,

Proof. The following system is derived under the form of f we
posit earlier, f (x, ξ ) = x + ξg(x).
dx
dt

= x(1 −
x
γ
) −

(x + ξg(x))y
1 + αξ + (x + ξg(x))

, (37)

dy
dt

=
β(x + ξg(x))y

1 + αξ + (x + ξg(x))
+

βξy
1 + αξ + (x + ξg(x))

− δy. (38)

WLOG we set g =
√
x, to demonstrate the method of proof.

dx
dt

= x(1 −
x
γ
) −

(x + ξ
√
x)y

(1 + αξ + x + ξ
√
x)

,

dy
dt

=
β(x + ξ

√
x)y

(1 + αξ + x + ξ
√
x)

+
βξy

1 + αξ + x + ξ
√
x

− δy.

(39)

We also set v =
1
x , and this yields the following equation for

v,

dv
dt

= −v +
1
γ

+
y(1 + ξ

√
v)v2

(1 + αξ )v + 1 + ξ
√

v
(40)

Our goal is to show that there exist initial conditions s.t. the v
solving (45) blows up in finite time.

Note via simple comparison,
dy
dt

≥ −δy (41)

Thus y ≥ y0e−t . Note y ≥ 1 on [0, ln(y0)].
Thus inserting this into (45) we obtain,

dv
dt

= −v +
1
γ

+
y(1 + ξ

√
v)v2

(1 + αξ )v + 1 + ξ
√

v

> −v +
(1 + ξ

√
v)v2

(1 + αξ )v + 1 + ξ
√

v
, (42)

on [0, ln(y0)]. However, ṽ solving

dṽ
dt

= −ṽ +
(1 + ξ

√
ṽ)ṽ2

(1 + αξ )ṽ + 1 + ξ
√

ṽ
, ṽ0 = v0. (43)

blows up at a finite time T ∗, as long as

(1 + ξ
√

v0)v0 > (1 + αξ )v0 + 1 + ξ
√

v0. (44)

We only need to choose v0 ≫ 1 s.t. T ∗
≤ ln(y0). This completes

the proof.
Thus v ≥ ṽ by standard comparison and must also blow up

in finite time for such sufficiently large initial conditions. Note
v =

1
x , and so large v0 implies small x0. This completes the

proof. □

We next present the proof of Corollary 1.

Proof. We focus on (37), set v =
1
x , and follow Theorem 2.3, with

g(x) being any general function, to yield

dv
dt

= −v +
1
γ

+
y(1 + ξvg

( 1
v

)
)v2

(1 + αξ )v + 1 + ξvg
( 1

v

) (45)

This will blow up in finite time for sufficiently large initial data
v0 if,

(1 + ξvg
( 1

v

)
)v2

(1 + αξ )v + 1 + ξvg
( 1

v

) > vq, 1 < q < 2. (46)

The finite time blow up of v implies the finite time extinction
of x. Simplifying (46) yields the result. The sub linearity require-
ment on g follows by using a linear/super linear function in (46)
to derive a contradiction. □

We next present the proof of Theorem 2.4.

Proof. Via Theorem 2.3 and Corollary 1 we know that there exist
initial data for which v solving (45) will blow up in finite time,
yielding the finite time extinction of the pest x (see Fig. 3). In
order to show that the pest extinction state is globally attracting,
it suffices to show blow up will occur for any positive initial
condition. To this end it suffices to derive parametric restrictions
such that dv

dt > 0, implying v will continue to grow. Now once
v ≫ 1, it must blow-up in finite time, via Theorem 2.3 and
Corollary 1. Following Theorem 2.3 for dv

dt > 0, we require,

1
γ

+

y0(1 + ξv0g
(

1
v0

)
)(v0)2

(1 + αξ )v0 + 1 + ξv0g
(

1
v0

) > v0 (47)

Since for v0, y0 > 0,
y0(1+ξv0g

(
1
v0

)
)(v0)2

(1+αξ )v0+1+ξv0g
(

1
v0

) > 0, it suffices to

choose γ << 1, so as to ensure (47) holds. This completes the
proof. □

Remark 5. Theorem 2.4 is a stronger result than global asymp-
totic stability, as the pest free equilibrium is reached in the limit
that t → T ∗ < ∞, and not as t → ∞.
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